1月3日:刘跃/范恩贵/李玉奇
发布时间:2017-12-29 浏览量:2980

 

 

报告一:李玉奇

报告题目: On the open question of  beta=6 ensemble
报告人: 李玉奇 副教授
主持人: 陈勇

报告时间:2018年1月3日周三13:00-14:00
报告地点:中北校区数学馆201

报告摘要:

Random matrix is matrix whose elements are random variables.The study of Random matrix begins 1930s in mathematics and 1950s in physics. Then it infiltrated into numerous areas,such as quantum chaos,number theory,multivariate statistics,transportation,communication,finance,

etc.In this talk, I will introduce our progress on the open question of beta=6 ensemble.
The talk mainly includes 4 parts:
1, the classical random matrix;
2, Dyson's beta ensemble;
3, the progress of the beta ensemble
4, the open problem of beta=6 and the answer. 

 

报告二:范恩贵

 

报告题目:Critical edge behavior in the perturbed Laguerre ensemble and the Painleve V transcendent

报告人:范恩贵 教授(复旦大学数学系)

主持人:陈勇 

报告时间:2018年1月3日14:00—15:00

报告地点:中北校区数学馆201

报告摘要:

In this paper, we apply Deift-Zhou nonlinear steepest descent approach  to analyze  the limit of the eigenvalue correlation kernel for a perturbed Laguerre unitary ensemble. It was found that under the double scaling s=4nt, at the hard edge, the limiting kernel can be described by a function related to a particular Painleve V. For large and small, the Painleve V  kernel reduces to two different Bessel kernel s respectively. At the soft edge, the limiting kernel is the Airy kernel as the classical Laguerre weight.

报告人简介:

范恩贵,教授、博士生导师。现工作于复旦大学数学科学学院、数学研究所、教育部非线性数学方法与模型开放实验室。研究方向:数学物理、偏微分方程、微分算子谱理论。近年来,连续二届为国家973课题成员、主持国家自然科学基金、上海曙光计划、上海曙光计划跟踪课题等多项研究课题。应邀访问美国密苏里大学、密西根州立大学、德克萨斯大学、波兰华沙大学、香港大学、香港城市大学、日本京都大学等。在《SIAM J Math Phys》、《Math Phys Anal Geom》、《Phys Rev E》、《Stud Appl Math》等国外重要刊物上发表论文80余篇,所发表论文被SCI刊源他引2000余次。2002年,获“上海市曙光学者”称号、2007年,获“上海市自然科学二等奖”、 2008年,获国际“汤姆森路透卓越研究奖” 、 “上海市曙光跟踪学者”称号。

 

报告三:刘跃

报告题目:Blow up of solutions to some quasilinear equations

arising from water waves

报告人:刘跃 教授 (University of Texas at Arlington)

主持人:陈勇 

报告时间:2018年1月3日15:00—16:00

报告地点:中北校区数学馆201

报告摘要:

In this talk, the blow-up mechanism for a class of quasilinear integrable equations which could possess peakons is investigated. The dynamics of the blow-up quantity involves interplay between the solution u and its gradient. We provide two different approaches. The first one is based on a refined analysis on either the evolution or the growth rate of the relative ratio. The second one isolates the truly" blowing up component from the blow-up quantity and utilizes the conservation laws to show that such a component blows up before the other component degenerates.

报告人简介:

刘跃,美国德克萨斯大学阿灵顿分校教授,1994年获布朗大学博士学位。刘跃教授是目前国际上偏微分方程研究尤其是浅水波领域的一流专家。在偏微分方程,应用分析和流体力学,可积系统与孤子理论,非线性波方程的稳定性理论、奇异性形成、局部和整体适定性等领域取得国际领先的成果。在《Physica D》、《J. Differential Equations》、《Nonlinearity》、《Quart. of Appl. Math.》等国际重要刊物上发表论文80余篇。

 

以诚为本赢在信誉9001cc
学院地址:上海中山北路3663号理科大楼

                上海市浦东新区楠木路111号
院长信箱:yuanzhang@sei.ecnu.edu.cn | 办公邮箱:office@sei.ecnu.edu.cn | 院办电话:021-62232550
Copyright 以诚为本赢在信誉9001cc(中国)有限公司